Reservoir Modelling & Value Maximizing of Field Redevelopments under Uncertainty

Hadi Hendizadeh October 2021

OMV Exploration & Production

.

Redevelopment of a super-mature oil field

Technology – NEW TECHNOLOGY

- Production start: Mar-1951
- Water injection start:
- Current oil production: ~
- Current water cut:

Nov-1968

Uncertainty & ranges

Variable	Description	Range/Values
MUE	Oil Viscosity (at 113 bar)	13 – 20 cP, integer
FWL	Free Water Level	1098 m – 1106 m TVDss
GOC	Gas Oil Contact (Pc = 0 for oil-gas)	1078 m – 1080 m TVDss
AQVN	Aquifer volume in north (c =1.0e-5 1/bar, PI = 1500 $m^3/d/bar$)	1.3e10 - 1.7e10 m ³
AQVE	Aquifer volume in east (c =1.0e-5 1/bar, $PI = 500 \text{ m}^3/\text{d/bar}$)	5.0e9 - 10.0e9 m ³
AQVS	Aquifer volume in south (c =1.0e-5 1/bar, PI = $500 \text{ m}^3/\text{d/bar}$)	5.0e7 - 5.0e8 m ³
KX1	Permeability for porosity 0 - 0.05	0.1 mD – 6 mD
KX2	Permeability for porosity 0.05 - 0.1	0.5 mD - 50 mD
KX3	Permeability for porosity 0.10 - 0.15	1 mD - 200 mD
KX4	Permeability for porosity 0.15 - 0.20	2 mD - 500 mD
KX5	Permeability for porosity 0.20 - 0.25	5 mD - 4000 mD
KX6	Permeability for porosity 0.25 - 0.30	50 mD - 7000 mD
KX7	Permeability for porosity >0.3	500 mD - 15000 mD
KZM345	Vertical Permeability = Horizontal Permeability / KZM345 for porosity 0.1 – 0.25	10 - 100
KZM67	Vertical Permeability = Horizontal Permeability / KZM67 for porosity 0.25 – max.	3.333 - 25
TZ	Steepness of oil-water transition zone (1~broad, 3~steep)	1, 1.5, 2, 3
SWR1	Irreduceable water saturation of SATNUM 1 (worst rock class)	0.5 - 0.65
SWR2	Irreduceable water saturation of SATNUM 2	0.4 - 0.6
SWR3	Irreduceable water saturation of SATNUM 3	0.35 - 0.5
SWR4	Irreduceable water saturation of SATNUM 4	0.25 - 0.4
SWR5	Irreduceable water saturation of SATNUM 5 (best rock class)	0.1 - 0.25
RPERM_1	Relative Permeability applied to "worst rock" (lowest rock quality indicator RQI out of 5 RQI classes) (9 ~ water wet, 4-5 ~ intermediate wet)	5,6,7,8,9
REL_SOR	Change of best-rock-class Sor relative to worst rock class	-0.06 to -0.02
REL_KRW	Change of best-rock-class Krw relative to worst rock class	0.05 to 0.15
REL_KRO	Change of best-rock-class Kro relative to worst rock class	-0.15 to -0.05
REL_NW	Change of best-rock-class nw relative to worst rock class	-1.0 to -0.2
REL_NO	Change of best-rock-class no relative to worst rock class	0.2 to 1.0
SGR	Residual Gas Saturation	0.05 - 0.1

Technology – NEW TECHNOLOGY

Prior distributions:

History matching of model ensembles

1) Simplified physics for dynamic response of 1453 geo-models.

3) Clustering in multi-dimensional space

2) Tracer response of individual wells

4) Differential Evolution to history match ensembles. Result: 62 static models but 100 sim run!

History Match - Oil rate

Dates (YYYY/MM/DD)

sm³/d 1800 1600 1400 1200 1000 800 600 400 200 1956/01/01 1966/01/01 1976/01/01 1986/01/01 1996/01/01 2006/01/01 2016/01/01 Dates (YYYY/MM/DD)

Rate Surf. Oil Prod.

Rate Surf. Oil Prod.

Technology ____ NEW A Innovation TECHNOLOGY

Redevelopment forecast incremental to No Further Activity

Technology Innovation

NEW

TECHNOLOGY

Over 140 of forecasts ...

NEW

TECHNOLOGY

Selection of best development option based on Expected Monetary Value

Technology Innovation

NEW

TECHNOLOGY

- Field redevelopments need to take uncertainty into account.
- Model ensembles allow forecasting under uncertainty.
- Forecasting results need to be combined with Bayesian economics.
- Artificial Intelligence is applied for decision analysis under uncertainty.
- Substantial value was generated, increases in Expected Monetary Value of more than 30 % was achieved using seamlessly integrated probabilistic forecasting economic evaluation - decision analysis.

The energy for a better life.